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Summary. Parametric relationships between the geno- 
type x environment interaction and the genetic correla- 
tion of the same attribute measured in two different envi- 
ronments are derived. It is shown that the criticism by 
Fernando et al. (1984) of Yamada's method (1962) in the 
case of unbalanced data is irrelevant. 
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The objectives of this paper are to re-examine in a 
more critical manner the genotype x environment inter- 
action when two environments are involved, to present 
relationships among the genetic parameters involved and 
also to clarify the point of issue raised by Fernando et al. 
(1984). Nevertheless, the argument primarily concerns the 
concept of the parametric relationship between the inter- 
action and genetic correlation rather than the estimation 
procedures of unbiased genetic variances and covar- 
iances. 

Introduction 

Falconer (1952) first proposed that for the purpose of 
quantitative genetic analysis, one trait measured in two 
environments may be considered two different traits; 
thus, the genotype x environment interaction can be in- 
corporated into a prediction equation as the correlated 
genetic response in the other environment. Robertson 
(1959) derived the relationship between these parameters 
theoretically, with the condition of the same heritability 
in the two environments. Dickerson (1962) presented re- 
finements in estimation formulae for the case in which the 
heritabilities differed among environments, and Yamada 
(1962) presented theory and formulae for dealing with 
traits with a greater variety of statistical properties than 
earlier works. The method has been widely used in 
animal breeding research (Hohenboken and Brinks 1971; 
Towelde 1981; Eisen and Saxton 1983; Tess et al. 1984; 
Mathur 1985). However, Fernando et al. (1984) have crit- 
icised Yamada's method, stating "this method gives 
biased estimates of genetic covariances unless the traits 
have identical genetic and residual variances", and pro- 
posed an alternative procedure to obtain an unbiased 
estimator of the covariance, when data are unbalanced. 

Theory 

In the earlier paper, Yamada (1962) attempted to make 
equivalence of the second moments of the variables being 
analysed under the two-way analysis of variance model 
with those under the one-way analyses of variance and 
covariance model, by expressing expected mean squares 
in the two-way ANOVA in terms of variance and co- 
variance components in the one-way ANOVA and 
ANOCOVA. All derivations were made for balanced 
data. 

Fernando et al. (1984) claimed that the direct applica- 
tion of Yamada's method would give biased estimates of 
the genetic covariance if the data were unbalanced. The 
point in dispute between these papers has been misun- 
derstood by some readers because the notations used 
were so different. Therefore, in this paper we shall follow 
the same notations adopted by Fernando et al. (1984) to 
clarify the point at issue. 

Model A (one-way analysis of variance model) for 
trait i: 

Yi jk  = kti -Jr- U lj  "i- e l j  k , (1 )  

i=1  or2; j = l , . . . , s ;  k = l , . . . , n l j .  



Using matrix notation, this model can be rewritten as: 

[y,] Fl#x,] [ Z  O 0 ]FUll [e,] 
Y = Y2 Ll#x2J + Z2ALu2A + e2 (1') 

where y~ is an n~ • 1 vector of data for trait i, i = 1 or 2, and 
n~ is the number of observations for the trait i; #~ is the 
expected value of trait i and 1~ is an nl x 1 vector of all 
ones; u~ is a vector of genetic group effects for trait i; the 
order of u I equals the order of Uz; Zi is a known matrix 
relating u i to Yi, and e i is an n i • 1 vector of residuals for 
trait i. Equation (1') is the structural model for the 
variance-component model. 

Assumptions for Model A are: 

E ( y i ) = l i ~ i ,  E(U/)=0, E(e / )=0 ,  

V a r r U l ] =  Via2 Ia12 ] V a r ~ e l ] =  [Ilae2, 0 ] 

LU21 L ia r2  I a2z ]  ' Le2_l 0 I2a~z~ ' 

Cov (ul, e j) = 0 

where I, 11 and Ig are identity matrices of appropriate 
order. Consequently, we obtain 

Var[::] [ Z1Z'~a# Z1Z~a121 [I~:~ O ] 
= Z 2 z  t a , 2  Z 2 z ~ a  2 J + 1 la~: (2) 

which is identical to equation (7) of Fernando et al. 
(1984). The variances and covariance of y{s are thus 

Var(yl)  = Z 1 Z ' ~ a ~ + I I 0 -  2 (2a) e 1 

~ t  2 - - "  a 2  (2b) 
V a r  (Y2) = Z 2 L 2 a 2 "l- 12 e 2 ,  

Coy (y:, y2 )=Zl  Z~ 0"12 .  (2c) 

The parameter set of Model A is therefore [a~, fix2 , a22, 
0.2 2 

e l '  0-e2]" 
Next, describe the data with the two-way analysis of 

variance model (Model B) in which the same attribute is 
measured in two f i x e d  environments. 

Yijk = [2i + UGj + Ul u + eijk , (3) 

i = l a n d 2 ;  j = l  . . . . .  s; k--1 . . . . .  n u.  

Using matrix notation, this model can be rewritten as: 

Z1 y : [:12] = [: ::] + [z2}UG-P [~1 Z02] u, +e (3') 

where y~, #~, Ii and Z~ are as defined earlier; u~ is a vector 
of genetic-group effects averaged over environments; u t is 
a vector of genotype • environment interaction effects, 
and e is a vector of residual effects. Expectations and 
covariance matrices of random variables in Model B 
are: 
E(yl)=l i# i ,  E ( u G ) = 0 ,  E ( u t ) = 0 ,  E ( e ) = 0 ,  

Var (u G) = 10-2, Var (u I) = 10-2, Coy (uG, ul) = 0 ,  

Var (e) = 10-2. 
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The parameter set in Model B is therefore [a~, a~, a~]. 
Equation (3') is the same as Eq. (8) of Fernando et al. 
(1984). 

Since we are dealing with two traits differing both in 
genetic and environmental variances in principle, equa- 
tion (3') is not appropriate to find the relationships of 
variance and covariance components between the 
Models A and B. The adequate model (designated as 
Model B') should be: 

Z 1 0 
Y =  [YY:]= L' [''']':i + [Z=] ur+ [Z, z:]U,+ [:,]. (4) 

Expectations and covariance matrices of random vari- 
ables in Model B' are: 

E ( y l ) = l i # i ,  E (u r )=0  , E(u~)=0 ,  E(~i)=0 

Var (ur )=I0-  2 ,  Var(us)=I0- 2, 

Var [e l  I F I l a2  0 2 ]  
g2 ~--- L 0 1 12 a ' 

Cov(ur ,  81)=0, Cov(u~, ~ ) = 0 ,  

Cov (ur, u t) = [I - I] % l -  

The existence of this covariance between uG and us is 
obvious  if we consider the variance within a specific envi-  
ronment  (i = 1 or 2). Then, we obtain 

V a r r Y t ]  IZtZ '~  Z t Z ~ ]  2 IZ~Z' t  0 , ]  
= - _, l a G +  a~ 

LY2J Zz Z'I 7'2 L l l  Z2 Zz 

FZ1 Z'l 0 a 0 
- } - 2 L  O _Z2Z~} Gi--t-[II; 2t i2ae22 ] . (5)  

The variances and covariance of y{s are thus 

V a r ( y 0 = Z 1 Z ' I  2 2 a I 2 , ( % + a s + 2  61)+ 10-~ (5a) 

Var (Y2) : Z 2  Z 2  2 2 a I 2 , (f f  G -]- a I - -  2 GI ) -~ 2 ae  2 (5b) 

Cov (Yl, Yz) = Z1 Z~ a~.  (5c) 

2 The parameter set of Model B' is [ag, a] ,  aal ,  a,~, a2] .  

Next we find the relationships between the parameter 
sets of the two models, A and B', instead of A and B, 
which was made by Fernando et al. (1984). 

Since Model A and B' are equivalent, Eqs. (2) and (5), 
or (2a)-(2c) and (5a)-(5c), should always be identical 
irrespective of the choice of Z~ or Z 2. Thus, we have 

a 2 = a  2 + a  2 + 2 a  m ,  (6a) 

0-2 = a2 + a2 _ 2 % , ,  (6b) . 

a l  2 = 0-2, (6c) 

a 2 = a 2 (6d) 
el el 

a 2 = a z (6e) 
e2 g2 " 
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The variables given above are all parameters,  so that 
those values should not be affected with balanced or 
unbalanced data. 

Adding (6a) and (6b) gives 

a~ + 0-~ = 2 (0-~ + 6~).  (7) 

Substituting (6c) into (7) gives 

0"2 I 2 = ~  (0-1 +0"2)--0"12 

__1 __0 .2)2+6162(1  (8) --~(0" 1 --rG). 

Equation (8) is essentially the relationship of genetic pa- 
rameters in Models A and B'. The same relationship was 
given by Robertson (1959) and Yamada (1962) from dif- 
ferent approaches. 

Discussion 
Fernando et al. (1984) stated that Yamada's method for 
estimating genetic correlation would lead to an unbiased 
estimate only if a 2 -- 0-~ and o~-2 _- 62,~ and they presented 
alternative estimators. However, in deriving the relation- 
ship of the parameters  between the two models, they may 
have been unaware of the existence of the covariance 
between the genetic-group effect and the interaction ef- 
fect, and this would explain their erroneous claims for 
equal genetic and residual variances. The covariance 
term, 0-Gt, certainly exists as is illustrated in Fig. 1. This 
was shown previously by Eisen et al. (1963). It does not 
exist in an ordinary analysis of variance in the two-way 
model (Model B). However, when one considers the vari- 
ance structure of the attribute in a particular environ- 
ment (i = 1 or 2, instead of 1 and 2) within a framework 
of the two-way layout, this covariance becomes abvious. 
Inspection of (6a) and (6b) gives 6GI = �88 (6~ - 62). In other 
words, the covariance between and I emerges as a 
result of unequal genetic variances in the two environ- 
ments. In addition to the above, Fernando et al. (1984) 
set 

['o o] rI, o] 
I2 ae - L 0 h 

which automatically leads to a~  = 62~ = 62. In our deriva- 
tion, these two points mentioned above were taken into 
consideration. As mentioned in the original paper  (Ya- 
mada  1962, p 504), the assumption of homogeneous error 
variances in two environments was disregarded as a 
matter  of convenience, although it is essential to use 
Model B. 

As to the formula for estimating the genetic correla- 
tion between the two traits suggested by Yamada (1962), 
Fernando et al. (1984) claimed that the 0-~ would be a 

El E2 

II --" (~2 
] ...-"" / 

- -  Gll Gll ........ ~G2 

"t i111 " ...... ,~,1' tl / ........'"'" I] 

911 
Igl j . J "  

G~2' 
. /  " ' f E ~ l  g2 .......... 

&2 ..... G2: 

gl 

g22 

Fig. 1. Relationships between randomly sampled two genetic 
group effects and the interaction effects in two environments; 
#=overall population mean, El=the environmental scale and 
ui=the average in the i-th environment, Gj=the j-th genetic 
group and gj=its effect, G~j=the j-th genetic group in the i-th 
environment and gq = its effect, G~j = the expected value of the 
j-th genetic-group in the i-th environment, G~fGo=the inter- 
action associated with the j-th group in the i-th environ- 
ment, iq = its effect. The sign of a vector (effect) is indicated by 
the direction of the arrow, being positive for up, while negative 
for down. Thus, Cov(Gj, Ii~)=(gl x ill)+(g2 X i12)+(gX X i2x ) 
+ (g2 X i22) = 0, because iq = -- i2j. On the other hand, taking the 
covariance within one environment, Cov(Gj, I l j)=(gl xi l l  ) 
+(g2 xi12)~0 and Cov(Gj, lzj)=(gl xi21)+(g2 xi22)4:0 

2__ 2 a n d  biased estimator of 0"12 unless a~ = a~ and a o , -  6e2 , 
the "adjusted" denominator  yielded a biased estimator of 
aa a2. Thus they concluded that Yamada's method 
should not be used with unbalanced data. Nevertheless, 
the above statements are not relevant, because 612 = aa  in 
Eq. (6c) is the relationship between parameters  rather 
than the relationship between estimators. Thus, they 
should not be influenced by sampling or unequal subclass 
numbers. 

Let us look at Yamada's  method from another angle. 
His method assumed only balanced data and the covar- 
iance between G and I was not assumed either. In this 
paper, we have obtained the relationships between the 
parameters  by a direct comparison of variances between 
two models, while Yamada (1962) obtained those from 
the comparison of expected mean squares in the two 
models. Furthermore,  the notations used were so differ- 
ent that  the derivations made by him look inconsistent 
with the present one. However, as far as balanced data 
are concerned, the two methods are identical to each 
other (see Appendix). 

It is worthwhile to note that the intra-class correla- 
tion, r' - 2 2 G - 0-0/(a~ + a 2), gives sufficient information as to 
the association of the ranking of genetic-group means 
between two or more environments, because r~ is the 
lower limit of the genetic correlation, ro, as shown 



853 

below: 

r G - _ _  
GI2 G 2 

/ 2--G2 tri tr2 x / a 2  + alZ + 2 a a ,  x / a a - i  - , --2~ra,  

4 
x/(tr2 + a2)z-- 40 -2 , 

4 > - -  -- r' 2 2 G era + ~i 
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A p p e n d i x  

Using the same model and notations, we re-evaluated Yamada's 
method (1962). We adopted similar presentations to those of 
Fernando et al. (1984), so that their criticism could be easily 
understood. 

First, rewrite Model B' as: 

y = X l  if+X2 u6:+X3 u l+s  

Substituting (5) into (A1), we can evaluate a reduction in the 
sum of squares in Model B', i.e., 

[ z I z t l  Z 2 Z 1 Z 2 Z l Z 2 1  2 ~ ~ [ -Zl  Z l  0 Z 2 0 ' ]  0"/2 Z 2 E (y' Q, y) = tr Qi zd 0.~ + tr Q, [ 

+ 2 t r Q ,  I Z l : ~  0 ] F ia~  0 z~zQ~'+trQ' L o lo"21 
L - -  

+fiX'. X, #. (A2) 

Expressing 

Q,. Qi.~] 
Qi= Q,.~ Qh~ ' 

Eq. (A2) can be expressed as: 

E (y' Q, y) = [tr (Q,,  Z 1 Z~) + 2 tr (Q,,~ Z 2 Z~) + tr (Qi= Z 2 Z~)] 0.2 

+ [tr (Q~, z 1 Z's) + tr (Q~= Z 2 z~)] 0.2 

+ 2 [tr (Q~. z I z '~) -  tr (Qh~ Z2 Z[)] aG~ 

+ t rQi ,  tr 2 + t rQ i=  2 , , e, 0"~2 -{-ff X 1 X 1 f t .  (A3) 

For balanced data, Z 1 = Z  2 and Q i . = Q ~ = ,  and thus Eq. (A3) 
is: 

E (y' Q~y)= 2tr [Q~. + Q . 2 ) z  I z '  1] a~ + 2 tr (Q~. z 1 Z~) 0.ff 

+ tr Q i .  ( ~ 2 ' ' + 0 . J + p  X 1X 1/~. (A3') 

It is worth noting, and to our surprise also, that the expected 
value of the reduction in the sum of squares for balanced data 
does not include the term tr6~. From Eq. (A3'), the expected sums 
of squares for u6, u t and 8 are expressed as: 

E [R (fl, u o) - R (fl)] ] 
E [R (fl, u o , u I ) -- R (/~, u~ )]i = 
E [y' y-- R (/~, u o, ul) ] 

-2tr[(Q2,, + Q 2 , ~ - Q 1 . - Q l , : ) Z 1  z~] 2tr [ (Q2 , , -Q1 . )Z1  z~] 2 t r ( Q 2 . - Q 1 . )  
2tr[(Q3. + Q 3 , : - Q 2 , , - Q 2 , : ) Z ~  z'l] 2tr[(Q31,-QE,,)Z~ z'~] 2tr(Q3, , -Q2 , , )  
2tr [ ( I - Q 3 .  - Q 3 J  Zl  z't] 2tr [ ( I - Q 3 . )  z l  z'l] 2tr ( I -Q3 , , )  

l 4 ] 0.; /" 
i 0.2 2 +,,.,)J 

where 

V l], 

['1 # 1  8 = . 

# $12 ' 82 

x =EZl 0] 
Z2 

Let us assume two environments, s genetic-groups and n individ- 
uals per group in each environment, then the right hand side of 
the above equation reduces to the following: 

[2n(s-1) n ( s - 1 ) s - 1  ] [ (r~ ] 
= 0 n ( s - 1 )  s - 1  a~ / .  

0 0 2 s ( n - 1 )  �89 (a,~ + a~)] 
(A4) 

Let W i = X l ,  W 2 =IX 1 X2], W 3 = [X 1 X 2 X3]. Thus the reduc- 
tions in the sum of squares can be written as: 

R (/~)= y' W 1 (W' 1 Wl) -  W' 1 Y, 

R (/L u~) = y' W 2 (W~ W2)-  W 2 y ,  

R(p, u G, ut) =y' W 3 (W~ W3)- W~ y. 

The expected values of the quadratic forms shown above are 

E (y' Q, y) = tr [Q~ Var (y)] + E (y') Q~ E (y) (A'I) 

in which Qi =W~(W~ Wi)-  W'~(i = 1, 2, 3). 

The expected values of the reductions in the sum of squares in 
Model A can be obtained by substituting Eq. (2) into (A1). 
Namely, 

E(y' Q~y)= tr (Qi,  Z1 Z'0a~ + 2 t r  (Q~2 Z2 Z'l) al 2 

+ tr (Qi22 Z2 Z~)0.22 + tr Qh~ 2 2 ae, + tr Q~= ae~ 

+#'x'~x1#. 

Again, we assume balanced data, and substitute Zx = Z  2 and 
Qi ,  = Qi=, thus, 

E(y' Q,y)= tr (Qill Z1 Z'l)(a2+a2)+2tr(Q,,2 Z1 z~) al2 

+ t r Q i .  2 2 'X'  . (c%~ +0.J +fl iX1# (A5) 
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Consequently, the expected sums of squares in Model A are 

E[R(~,uc ,u l ) -R(f l ,  uG)] -- 2 t r [ (Q311-Q2.)ZlZl l  
E [y' y - R (~, ua, u~)] 2 tr [(! - Q 3,1) Z 1 Z'l] 

For balanced data substituting s and n as before, we obtain: 

I 
n(s-- l)  n (s -1)  s--1 ] [�89 

= n(s--1) - - n ( s - 1 )  s - 1  ] 0-12 | "  
O 1 0.2 2 0 2s(n--1) [](  ~, + 0-,~)J 

(A6) 

Since (A4) and (A6) are equivalent expected sums of squares, we 
have (A4)= (A6). Dividing each row by the corresponding de- 
grees of freedom, we obtain the following equations of the ex- 
pected mean squares: 

2 n 
n 

0 4 = o n 1 2 2 (% + %)  

- 1  2 2 - ~(a~ +0.2) 

0"12 
! 2 2 ~(%+0-J 

Using 

0 

i]l  '2n i'2nil 1,.o - ' " '  

we obtain 

0-~ | = - 1  
1 0.2 0.2 J ~( ~+ J o 

- 1  2 2 ~ 
~(al + a2) 

0"12 
1 2 2 

(ae~ + a~) 

which agrees with Eqs. (6a)-(6e) in this paper. 

2 tr [(Q2~ - Q1 ~,) z l  Z]] 
2 tr [(Q3~ - Q212) z l  Z'l] 
2tr (-Q3~ ~ Z 1 z]) 

2tr(Qz~2-Qll,)" 
2tr (Q311-Q2,) 
2 t r ( l - Q a , )  

1 2 2 1 ~(a~ +0-2) 
/ ~,~ / 

1 2 2 L~(0-,,~ +oe,)J 
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